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1 Supplementary Methods

1.1 Estimating of the approximate degrees of freedom for the hy-
pothesis test

For the linear model and generalized least squares model described above, the degrees of
freedom of the hypothesis test is fixed based on the number of covariates and the sample
size:

d = N − p (1)

where N is the number of samples, and p is the number of covariates. For the linear mixed
model, we can explicitly account for the fact that estimating the random effect changes
the degrees of freedom of the distribution used to approximate the null distribution (Hoff-
man, 2013; Kenward and Roger, 1997; Giesbrecht and Burns, 1985; Kuznetsova et al., 2017;
Halekoh and Højsgaard, 2014). Thus let dg,C,L be the degrees of freedom of the hypothesis
test for gene g for the specified set of covariates, C, and contrast matrix, L. We omit the
statistical details here, but dg,C,L can be estimated from the model fit using the very fast
Satterthwaite approximation (Giesbrecht and Burns, 1985; Kuznetsova et al., 2017) (the
default in dream) or the more accurate but computationally demanding Kenward-Roger ap-
proximation (Kenward and Roger, 1997; Halekoh and Højsgaard, 2014) used by dream-KR.

1.2 Modeling measurement error in RNA-seq counts

The limma package models measurement error in the RNA-seq counts by estimating precision
weights for each observation (Law et al., 2014). The voom() function does this by fitting a
smooth function to the square root residual standard deviation regressed on the log2 counts.
However, voom() can only model variables as fixed effects, and so cannot consider within-
individual variation in estimating the precision weights. In voomWithDreamWeights(), we
apply an identical procedure except that the residuals are computed by fitting a linear mixed
model specified by the user. A dream analysis can use precision weights computed by either
voom() or voomWithDreamWeights().

1.3 Software

The dream method is available in the dream() function in the variancePartition (Hoffman
and Schadt, 2016) package at http://bioconductor.org/packages/variancePartition

from Bioconductor version ≥ 3.7.

1.4 Implementation

Linear mixed models are estimated using the lme4 package (Bates et al., 2015). Estimating
the residual degrees of freedom is performed with either Satterthwaite approximation (Gies-
brecht and Burns, 1985) in the lmerTest package (Kuznetsova et al., 2017) or the Kenward-
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Roger approximation (Kenward and Roger, 1997) in the pbkrtest package (Halekoh and
Højsgaard, 2014). Parallel processing of thousands of genes on a multi-core computer is per-
formed with BiocParallel (Morgan et al., 2019). A naive implementation would copy the
entire dataset to each thread so that memory usage would increase linearly with the num-
ber of threads used. However, this is problematic for large datasets and prevents the user
from taking advantage of multi-core machines. Instead, iterators (Ooi and Weston, 2019)
is used to stream chunks of data to each thread so that memory usage is almost constant
regardless of the number of threads. This dramatically reduce memory usage. Visualization
is performed with ggplot2 (Wickham, 2009).

1.5 Simulating RNA-seq count data

In order to reproduce the characteristics of real biological datasets as closely as possible, we
simulated gene expression data with

• 4 sources of expression variation with simulated magnitude designed to mimic real data

– variance across individuals

– variance across two disease classes

– variance across two batches to simulate a batch effect

– residual variance

• negative binomial error variance

• 20,738 protein coding genes from GENCODE v19

• ∼ 57 million total counts per sample

1.5.1 Further details

The true expression values were simulated from a linear mixed model with 4 components:
1) variance across individuals; 2) variance across two disease classes (i.e. cases versus con-
trols); 3) variance across two batches; and 4) residual variance. All samples from a given
individual have the same disease status, and analysis considers the cross-individual test of
differential expression between cases and controls. Samples are randomly assigned to one of
two batches. Including a batch component here models the expression heterogeneity across
technical batches, but also across two brain regions, or tissues types as is common in real
data. For each gene, the variance fractions for these 4 components were sampled from a beta
distribution with parameters set to give a specified mean and variance described below. The
residual variance was set so that the variance fractions summed to 1. If the randomly draw
values sum to more than one, the residual variance is set to 0.05 and the other components
are scaled accordingly. The variance component values were based on examining the variance
fractions estimated with variancePartition across many datasets (Hoffman and Schadt, 2016;
Hoffman et al., 2017; Carcamo-Orive et al., 2017; Girdhar et al., 2018). In each simulation,
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500 genes were randomly selected to be differentially expressed between cases and controls,
and for all other genes the disease component was set to zero.

At the implementation level, simulating expression data is divided into three steps: 1) Sim-
ulate relative expression values, 2) convert these into multiplicative fold changes compared
to a baseline, 3) simulate RNA-seq counts from negative binomial model given the expected
multiplicative fold change values.

Let yj be the vector of relative expression values for gene j across all individuals that varies
from −∞ to ∞. Let ηk correspond to the kth component where k ∈ (Individual, Disease,
Batch, Noise) so that, for example, ηIndividual represents the vector of expected expression
attributable to variance across individuals. Since each variable represented by k has a dif-
ferent number of levels, let η̃ be the standardized version of η with a mean of 0 and variance
1. The expression value of gene j is simulated according to

yj = η̃ Individual + η̃Disease + η̃Batch + η̃Noise (2)

where each variance component ηk is drawn according to

ηk = Xkβk (3)

where Xk is the matrix of ANOVA coded indicator values for variable k. The number
of columns in Xk equals the number of categories in variable k so that Disease has two
categories, Batch has 2 categories and Individual has N categories. The vector βk gives the
expected value for each of the categories in variable k. These expected values are drawn
from a normal distribution according to

βk = N (0, σ2
k). (4)

Since the expression values are simulated based on standardized variance components, σ2
k

corresponds to the fraction of variance attributable to component k. Since fractions naturally
fall between 0 and 1, they can be drawn from a beta distribution. The beta distribution is
usually parameterized in terms of two shape parameters, α and β, but here we parameterize
it with a mean and variance by matching the moments of the distribution. The simulated
mean for each component corresponds to the expected variance fractions and were motivated
based on variancePartition across many datasets (Hoffman and Schadt, 2016; Hoffman et al.,
2017; Carcamo-Orive et al., 2017; Girdhar et al., 2018). The simulated variance fractions
are draw according to

σ2
Individual = Beta(mean = 0.45, var = 0.03) (5)

σ2
Batch = Beta(mean = 0.20, var = 0.01). (6)

For the 500 genes where disease has an effect on expression,

σ2
Disease = Beta(mean = 0.30, var = 0.005), (7)
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and the value of σ2
Disease is subtracted from σ2

Individual, since all samples from the same indi-
vidual have the same disease status. For all other genes, σ2

Disease = 0.

The random noise component is drawn so that the variance fractions sum to 1, but is set to
a minimum of 0.05:

σ2
Noise = max

(
1− σ2

Individual − σ2
Disease − σ2

Batch, 0.05
)
. (8)

Given, yj, the vector of relative expression values for gene j, convert them into multiplicative
fold change values with a minimum of 1 according to

FCj = yj/2−min(yj/2) + 1. (9)

These simulated multiplicative fold change values are passed to polyester v1.14.0 (Frazee
et al., 2015) to produce counts with biologically realistic negative binomial error. The num-
ber of reads per gene is selected based on gene length using the ‘mean model‘ from polyester.
Otherwise, polyester defaults were used.

Expression values were simulated following above procedure for 20,738 protein coding genes
from GENCODE v19. Approximately 57 million total reads counts were generated for each
sample (mean: 57.3M, median: 55.0M, sd: 24.4M). Simulations using a range of values for
each of these parameters did not change the conclusions.

1.6 Performance metrics

In each simulation described above, 500 genes were simulated with non-zero coefficients.
These genes were considered as ‘positives’, and all remaining genes were considered as ‘neg-
atives’. All performance metrics follow from standard definitions based on a p-value cutoff
C:

False positives (FP): genes in the ‘negative’ class having a p-value < C

True positives (TP): genes in the ‘positive’ class having a p-value < C

False negatives (FN): genes in the ‘positive’ class having a p-value > C

True negatives (TN): genes in the ‘negative’ class having a p-value > C

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Precision-Recall (PR) curves and area under the PR curve (AUPR) were implemented using
the PRROC package (Grau et al., 2015).
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Confidence intervals were computed using the asymptotic approximation of the binomial
model implemented in R package binom (Dorai-Raj, 2015). Letting p̂ be the estimated pro-

portion, the confidence interval is p̂±z
√

p̂(1−p̂)
n

, where z is the 1− α
2

quantile of the standard

normal distribution and α = 0.05. Since AUPR can be interpreted as a binomial proportion
Boyd et al. (2013), confidence intervals for AUPR were computed the same way.

1.7 Null simulations using real RNA-seq data

Since simulated counts cannot fully reproduce the biological, technical and random variabil-
ity of real data, we used counts from 317 RNA-seq samples of induced pluripotent stem cells
from 101 individuals available from GEO at GSE79636 (Carcamo-Orive et al., 2017). Subsets
of the data were generated using N ∈ (5, 10, 20, 40) individuals and R ∈ (2, 3) replicates per
individual. In each simulation, the first

√
N −1 principal components of the gene expression

were included as covariates to account for batch effects (Leek et al., 2010). A continuous
variable to be the focus of the differential expression analysis was simulated for each sample.
For this purpose, a normally distributed variable independent of the gene expression data
was simulated with 99% of the variance across individuals and 1% of the variance within
individuals. (We note that simulating binary values for this variable gives similar results.)
Since this phenotype is independent of the gene expression, we can evaluate the control of
type I error from the 12 differential expression analysis. If the hypothesis tests for each
gene are statistically independent, then an accurate statistical test will give p-values that
are uniformly distributed under the null. We note that in real data, co-expression between
genes (Langfelder and Horvath, 2008) can cause a deviation from uniformity even under the
null.

For each (N,R) pair, 5 independent simulation were performed each using 14, 634 expressed
genes. The false positive rate was evaluated as the fraction of genes with p < 0.05. The re-
lationship between the false positive rate and expression magnitude was evaluated by fitting
a logistic regression model where the response is the binary variable indicating if the gene is
a false positive at p < 0.05 and the predictor is the log2 counts per million.

1.8 Data analysis

Data for Timothy syndrome was downloaded from GEO at GSE25542 (Pasca et al., 2011).
Data for childhood onset schizophrenia was downloaded from https://www.synapse.org/

#!Synapse:syn9907463 (Hoffman et al., 2017). Post mortem brain RNA-seq data from
Alzheimer’s and controls was downloaded from https://www.synapse.org/#!Synapse:

syn3159438 (Wang et al., 2018). Analysis was performed on individuals from European
ancestry that were assayed in each of 4 brain regions (Brodmann areas 10, 22, 36 and 4),
had ApoE genotype data, had Braak stage information, and were either controls or definite
AD patients (i.e. possible and probable cases were excluded). Differential expression analysis
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corrected for batch, sex, RIN, rRNA rate, post mortem interval, mapping rate and ApoE
genotype.

Data from GENESIPS was obtained from GEO at GSE79636 (Carcamo-Orive et al., 2017).
Data from Warren et al. (2017) was obtained from GEO at GSE90749. Data from Mariani
et al. (2015) was obtained from recount2 (Collado-Torres et al., 2017) at SRP047194. Enrich-
ment analysis was performed with cameraPR (Wu and Smyth, 2012) in the limma package
(Ritchie et al., 2015). In order to avoid using arbitrary cutoffs to identify differentially ex-
pressed genes, gene set enrichments were evaluated by applying cameraPR to the differential
expression test statistics from each analysis. The fraction of expression variation explainable
by cis regulatory variants was obtained from Gamazon et al. (2015) and Huckins et al. (2019).

Code for simulations and reproducible analysis, figures, and statistics from differential ex-
pression and enrichment analyses are available at https://github.com/GabrielHoffman/

dream_analysis.

1.9 A note on shrinkage by combining gene-level results

In functional genomics, shrinkage/regularization is widely used to borrow information across
multiple genes and Smyth’s limma is a prime example. The eBayes function in limma uses
an empirical Bayes approach to shrink the observed residual variances towards a common
value. Note that this approach pushes the gene-level value towards a common value, instead
of assigning a single summary value to all genes. This has worked extremely well in practice.

The duplicateCorrelation function in limma estimates the contribution of replicates by
estimating a variance component for each gene, τ 2g , and then summarizing the gene-level
values with a single genome-wide value, τ 2. Setting a single genome-wide value is a very
strong shrinkage, and with sufficient sample size using the estimated gene-level value (as
dream does) performs improves performance.

This raises two related questions: 1) Can the gene-level variance component estimate, τ 2g ,
be shrunk towards a central value in a compromise between using the estimated gene-level
value and a single genome-wide summary? 2) Can Smyth’s empirical Bayes shrinkage of the
residual variance be applied to the linear mixed model?

Yu et al. (2019) has recently developed a framework to combine shrinkage of both the
variance component and the residual variance term in order to create a new moderated
t-statistic. Yu et al. (2019) refers to this approach as fully moderated t-statistics (FMT).
For each gene, the shrunken variance component and shrunken residual variance are then
combined to approximate the degrees of freedom of the t-statistic under the null.

The FMT methods did not accurately control the false positive rate in our simulations,
and no shrinkage is used by dream with default settings or with the KR method. However,
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the FMT method is available for the sake of reproducibility in the function
variancePartition:::eBayesFMT() which can be run on the result of dream just as eBayes
is used by limma. This function is adapted from the code kindly provided provided by Yu
et al. (2019).

We note that an earlier version (before v1.15.5 from September 5, 2019) of dream in the
variancePartition package included an empirical Bayes step. However, after additional
testing, we removed this step so that only gene-level estimates are used in the linear mixed
model. We note that the elevated false positive rate that Yu et al. (2019) observed in simu-
lations using dream are due this this issue and has been resolved.

Running the eBayes function on a linear mixed model fit with dream in version ≥ v1.15.5
gives the following warning:

Warning message:

In eBayes(fit) :

Empircal Bayes moderated test is no longer supported for dream analysis

Returning original results for use downstream
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2 Supplementary Figures

Figure S 1: False discovery rates for multiple simulation conditions. False dis-
coveries plotted against the number of genes called differentially expressed by each method.
Results are shown for between 4 and 50 individuals (rows) and 2 to 4 replicates (columns).
For each combination, 50 simulated datasets were analyzed.
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Figure S 2: Precision-recall curves for multiple simulation conditions. Plots shows
performance in identifying true differentially expressed genes. Dashed lines indicate perfor-
mance of a random classifier. Results are shown for between 4 and 50 individuals (rows) and
2 to 4 replicates (columns). For each combination, 50 simulated datasets were analyzed.
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Figure S 4: False positive rate for multiple simulation conditions. False positive
rate at p < 0.05 evaluated under a null model were no genes are differentially expressed
illustrates calibration of type I error from each method. As indicated by the dashed line,
a well calibrated method should give p-values < 0.05 for 5% of tests under a null model.
Results are shown for number of individuals between 4 and 50 (rows), and replicates between
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Figure S 7: QQ plots from null simulations using real data. QQ plots under a null
model were no genes are differentially expressed based on real RNA-seq data from (Carcamo-
Orive et al., 2017). Colors as same as in previous figure.
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false positive rate.
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Figure S 9: Gene set enrichment FDR for top 30 genesets from differential
expression analysis of Braak stage. Enrichment FDRs were computed using t-statistics
from dream and duplicateCorrelation.
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Figure S 10: Application to transcriptome data from Alzheimer’s disease. A)
Gene set enrichment FDR for genes associated with test of Braak stage by brain region
term with 4 coefficients. Results are shown for dream and duplicateCorrelation. Lines with
broad and narrow dashes indicate 10% and 5% FDR cutoff, respectively. B) Comparison of
− log10 p-values from applying dream and duplicateCorrelation. Each point is a gene, and
is colored by the fraction of expression variation explained by variance across individuals.
Black solid line indicates a slope of 1. Dashed line indicates the best fit line for the 20%
of genes with the highest (red) and lowest (blue) expression variation explained by variance
across individuals. C) Results for TUBB2B. Box plot is omitted because it is identical to
Figure 3C. Bar plot of variance decomposition for TUBB2B shows that 73.4% of variance
is explained by expression variance across individuals. Since this value is much larger than
the genome-wide mean, duplicateCorrelation under-corrects for the repeated measures.
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Figure S 11: Gene set enrichment FDR for top 30 genesets from differential ex-
pression analysis of childhood onset schizophrenia. Enrichment FDRs were computed
using t-statistics from dream and duplicateCorrelation analysis of iPSC-derived A) neural
progenitor cells (NPCs) and B) neurons.
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Figure S 12: Differential expression analysis of Timothy syndrome compared to
controls in four cell types or conditions. Comparison of − log10 p-values from applying
dream and duplicateCorrelation analyze case/control differences. Each point is a gene, and
is colored by the fraction of expression variation explained by variance across individuals.
Black solid line indicates a slope of 1. Dashed line indicates the best fit line for the 20%
of genes with the highest (red) and lowest (blue) expression variation explained by variance
across individuals.
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Figure S 13: Relationship between differential expression results and genetic
regulation. For each gene the fraction of expression variation explainable by cis-eQTLs is
compared to the difference in − log10 p-value from duplicateCorrelation and dream differen-
tial expression analysis. Due to the large number of genes, a sliding window analysis of 100
genes with an overlap of 20 was used to summarize the results. For each window, the average
fraction of expression variation explainable by cis-eQTLs (i.e. eQTL R2) in brains from the
CommonMind Consortium (Fromer et al., 2016) and average difference in − log10 p-values
from the two methods are reported when differential expression analysis is performed on A)
Timothy Syndrome in 4 cell types from Pasca et al. (2011) B) the SNP rs12740374 in 3
cell types from Warren et al. (2017), C) Autism Spectrum in organoids from Mariani et al.
(2015), and D) insulin resistance in iPSC from Carcamo-Orive et al. (2017). Spearman rho
correlations and p-values are shown along with loess curve.21
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